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Abstract. We consider theL-state cyclic solid-on-solid lattice models under a class of open
boundary conditions. The integrable boundary face weights are obtained by solving the reflection
equations. Functional relations for the fused transfer matrices are presented for both periodic
and open boundary conditions. The eigenspectra of the unfused transfer matrix is obtained from
the functional relations using the analytic Bethe ansatz. For a special case of crossing parameter
λ = π/L, the finite-size corrections to the eigenspectra of the critical models are obtained,
from which the corresponding conformal dimensions follow. The calculation of the surface free
energy away from criticality yields two surface specific heat exponents,αs = 2 − L/2` and
α1 = 1 − L/`, where` = 1, 2, . . . , L − 1 coprime toL. These results are in agreement with
the scaling relationsαs = αb + ν andα1 = αb − 1.

1. Introduction

Square lattice models in statistical mechanics with non-periodic boundary conditions have
received intermittent attention over the years (see, e.g., [1–6]). Up until quite recently
the systematic study of the integrability of such non-periodic systems lagged well behind
the study of the corresponding periodic systems. It is well understood that models with
periodic boundary conditions are integrable when their bulk/Boltzmann weights satisfy the
Yang–Baxter equation [7]. Since Sklyanin’s work [8], we now understand that lattice
models with open boundary conditions are integrable if in addition the boundary weights
satisfy the reflection equations [9]. In particular, Sklyanin formulated the construction of
commuting transfer matrices for the six-vertex model with open boundary conditions, from
which the integrability is assured. Recent lectures on subsequent developments can be found
in [10, 11].

Beyond their intrinsic mathematical interest, exactly solvable lattice models with open
boundary conditions are attractive from the viewpoint of studying various surface critical
phenomena [12–21]. Our motivation here is to study the surface critical behaviour of square
lattice cyclic solid-on-solid (CSOS) models [22, 23]. These models are face models in which
the adjacency condition between neighbouring heights is defined by the Dynkin diagram
of the affineA

(1)

L−1 algebra. The CSOS model has been well studied for periodic boundary
conditions. The free energy, the local height probabilities and the correlation length have
all been evaluated, along with their corresponding bulk critical exponents [22–25]. The
complete operator content has been discussed in [26] and the fusion procedure has been
carried out in [27, 28]. Some surface properties have been derived in [29].
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The crossing or anisotropy parameter of the CSOS models is defined byλ = `π/L,
where` = 1, 2, . . . , L − 1 is coprime toL [23]. A special case of interest isL = 3 and
` = 2 which is related to Baxter’s three colourings of the square lattice [7, 23, 30, 31].

The layout of this paper is as follows. In section 2 the CSOS models with both periodic
and open boundary conditions are described. We solve the reflection equations for the
boundary face weights. The functional relations of the fused transfer matrices are also
presented. In section 3 the eigenspectra of the unfused transfer matrix is extracted from the
functional relations following the analytic Bethe ansatz method. The finite-size corrections
to the transfer matrix eigenspectra at criticality are obtained for a special value of the
crossing parameter. In section 4 the free energy of the open boundary models is shown to
satisfy a unitarity relation. We solve the unitarity relation following the inversion relation
method [7, 32]. From the singular part of the free energy we obtain two surface specific
heat exponents in agreement with scaling predictions. We conclude with a brief discussion.

2. CSOS models

The CSOS lattice models [22, 23] are a family ofL-state face models [7] built on the affine
A

(1)

L−1 Dynkin diagram. States at adjacent sites of the square lattice must be adjacent on the
Dynkin diagram. The cyclic nature of the heights distinguishes the CSOS model from the
corresponding RSOS model [33] built on theAL Dynkin diagram.

2.1. Bulk face weights

The allowed, or non-zero, face weights of the CSOS models are given by [22, 23]

W

(
a ∓ 1 a

a a ± 1

∣∣∣∣u)
= ϑ1(λ − u)

ϑ1(λ)

W

(
a a ∓ 1

a ± 1 a

∣∣∣∣u)
=

[
ϑ4(wa−1)ϑ4(wa+1)

ϑ2
4(wa)

]1/2
ϑ1(u)

ϑ1(λ)
(2.1)

W

(
a a ± 1

a ± 1 a

∣∣∣∣u)
= ϑ4(wa ± u)

ϑ4(wa)

wherewa = aλ + w0. The heighta = 1, 2, . . . , L and 0< w0 < π is a free parameter.
The crossing parameterλ is given byλ = `π/L, where` = 1, 2, . . . , L − 1 is coprime to
L andL > 2. The elliptic functionsϑ1(u), ϑ4(u) are standard theta functions of nomep

ϑ1(u) = ϑ1(u, p) = 2p1/4 sinu

∞∏
n=1

(1 − 2p2n cos 2u + p4n)(1 − p2n) (2.2)

ϑ4(u) = ϑ4(u, p) =
∞∏

n=1

(1 − 2p2n−1 cos 2u + p4n−2)(1 − p2n) (2.3)

where 0< p < 1 with p = 0 at criticality.
These face weights satisfy the star-triangle equation∑

g

W

(
f g

a b

∣∣∣∣u)
W

(
e d

f g

∣∣∣∣v)
W

(
d c

g b

∣∣∣∣v − u

)
=

∑
g

W

(
e g

f b

∣∣∣∣v − u

)
W

(
g d

a b

∣∣∣∣v)
W

(
e d

g c

∣∣∣∣u)
(2.4)
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inversion/unitarity relations∑
g

W

(
d g

a b

∣∣∣∣u)
W

(
d c

g b

∣∣∣∣ − u

)
= ρ(u)δa,c (2.5)

and the crossing unitarity relations∑
g

W

(
g b

d a

∣∣∣∣λ − u

)
W

(
c b

d g

∣∣∣∣λ + u

)
ϑ4(wa)ϑ4(wg)

ϑ4(wd)ϑ4(wb)
= ρ(u)δa,c (2.6)

whereρ(u) = ϑ1(λ − u)ϑ1(λ + u)/ϑ2
1(λ).

2.2. Periodic boundaries

There is a hierarchy of commuting families of transfer matrices constructed by the fusion
procedure on the CSOS models under periodic boundary conditions. Let

Wm×n

(
d c

a b

∣∣∣∣u)
be the fused face weights with fusion levelsm andn in the vertical and horizontal directions,
respectively [27, 28]. Then the fused transfer matricesT (m,n)(u) are defined with elements

〈a|T (m,n)(u)|b〉 =
N∏

j=1

Wm×n

(
aj aj+1

bj bj+1

∣∣∣∣u)
(2.7)

with aN+1 = a1 and bN+1 = b1 whereN is the number of faces in a row of the lattice.
By construction the fused face weights satisfy the star-triangle equations, resulting in the
commutation relations

[T (m,n)(u), T (m,n̄)(v)] = 0. (2.8)

These fused transfer matrices satisfy groups of functional relations, which can be easily
proved by fusion. Let us define

T (n)
k = T(m,n)(u + kλ)

T (n) = 0 if n < 0 or m < 0 (2.9)

T (0) = I

along with the function

f m
n =

m−1∏
j=0

ρN(u − jλ + nλ). (2.10)

Then for eachm = 1, 2, . . . the functional relations are

T (n)

0 T (1)
n = T (n+1)

0 + f m
n−1T

(n−1)

0 n = 1, 2, . . . . (2.11)

The unfused models of interest here are recovered by setting the fusion level to
n = m = 1. Disregarding finite-size corrections, the bulk free energy in this case satisfies

T (u)T (u + λ) = f 1
0 . (2.12)

This is the unitarity relation for periodic boundary conditions.



1990 Yu-Kui Zhou and M T Batchelor

2.3. Boundary face weights

Integrable models with open boundary conditions are defined by both the bulk and the
boundary face weights. The latter are represented by three heights interacting around a
triangular face [11, 34–37]. For the CSOS models,

K

(
a

c

b

∣∣∣∣) = 0 unless|a − b| = 1, L − 1 and|a − c| = 1, L − 1 (2.13)

which satisfy the boundary version of the star-triangle equation (reflection equations)∑
f,g

W

(
a b

g c

∣∣∣∣u − v

)
K

(
g

c

f

∣∣∣∣u; ξ

)
W

(
a g

d f

∣∣∣∣u + v

)
K

(
d

f

e

∣∣∣∣v; ξ

)
=

∑
f,g

K

(
b

c

f

∣∣∣∣v; ξ

)
W

(
a b

g f

∣∣∣∣u + v

)
K

(
g

f

e

∣∣∣∣u; ξ

)
W

(
a g

d e

∣∣∣∣u − v

)
.

(2.14)

In general there may be more arbitary parameters thanξ . Inserting the CSOS bulk face
weights (2.2) into the reflection equations and making use of the elliptic function identity

ϑ1(x + y)ϑ1(x − y)ϑ4(w + v)ϑ4(w − v) − ϑ1(v + y)ϑ1(v − y)ϑ4(w + x)ϑ4(w − x)

= ϑ1(x + v)ϑ1(x − v)ϑ4(w + y)ϑ4(w − y) (2.15)

we find the following CSOS boundary face weights:

K

(
1

L

L

∣∣∣∣u; ξ

)
= ϑ1[ξ + u]ϑ4[u − (wL + ξ)]

ϑ2
1(λ)

(2.16)

K

(
1

1
1

∣∣∣∣u; ξ

)
= ϑ1[ξ − u]ϑ4[u + (w1 + ξ)]

ϑ2
1(λ)

(2.17)

K

(
a

t

b

∣∣∣∣u; ξ

)
= ϑ1[ξ + (a − t)u]ϑ4[u − (a − t)(wb + ξ)]

ϑ2
1(λ)

δb,t . (2.18)

The identity (2.15) also plays a role in establishing the integrability of the bulk weights
[23].

It is obvious that the boundary face weights satisfy the crossing symmetry∑
c

√
ϑ4(wc)

ϑ4(wa)
W

(
d c

a b

∣∣∣∣2u + λ

)
K

(
c
e

b

∣∣∣∣u + λ

)
= ϑ1(2u + 2λ)

ϑ1(λ)
K

(
a

e

b

∣∣∣∣ − u

)
. (2.19)

2.4. Fusion results

The fused transfer matricesT (m,n)(u) of the open boundary CSOS models are defined by
the following elements,

〈a|T (m,n)(u)|b〉 =
∑

{c0,...,cN }
K

(n)
+

(
a0

b0
c0

∣∣∣∣u)
K

(n)
−

(
cN

aN

bN

∣∣∣∣u)
×

N−1∏
k=0

[
W(n×m)

(
ck ck+1

bk bk+1

∣∣∣∣u)
W(m×n)

(
ck ak

ck+1 ak+1

∣∣∣∣u + nλ − λ

)]
(2.20)

where the right boundary fused face weightsK
(n)
− are given by fusing

K−

(
a

t

b

∣∣∣∣u)
= K

(
a

t

b

∣∣∣∣u; ξ−

)
(2.21)
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while the left boundary fused face weightsK
(n)
+ are given by fusing

K+

(
t

b
a

∣∣∣∣u)
= K

(
a

t

b

∣∣∣∣ − u + λ; ξ+

) √
ϑ2

4(wa)

ϑ4(wt )ϑ4(wb)
. (2.22)

These fused transfer matrices form commuting families,

[T (m,n)(u), T (m,n′)(v] = 0. (2.23)

Like its periodic counterpart, the unfused transfer matrix is recovered by setting the fusion
levels tom = n = 1, i.e.T (u) = T (1,1)(u).

The fusion procedure for face models with open boundary conditions has been
demonstrated elsewhere [35, 37] and thus we do not repeat the details here. However,
it is worthwhile writing down the functional relations satisfied by the fused CSOS transfer
matrices. We find

T (m,n)
k = T(m,n)(u + kλ)

T (m,n) = 0 if n < 0 or m < 0 (2.24)

T (m,0) = I (2.25)

where now the auxiliary functionf m
n is determined by

f m
n = ω−(u + nλ)ω+(u + nλ)

ρ(2u + 2nλ)

m−1∏
j=0

ρN(u − jλ + nλ)ρN(u + jλ + nλ). (2.26)

The boundaries contribute the diagonal matrix factorsω−(u) andω+(u), with

ω−
cr,cr

(u) =
∑
a,b

√
ϑ4(wb)

ϑ4(wcr−1)

×W

(
cr b

cr − 1 a

∣∣∣∣2u + λ

)
K−

(
b

cr

a

∣∣∣∣u + λ

)
K−

(
cr − 1

a

cr

∣∣∣∣u)
(2.27)

ω+
cl ,cl

(u) =
∑
a,d

√
ϑ2

4(wa)ϑ
2
4(wcl

)

ϑ3
4(wcl−1)ϑ4(wd)

×W

(
cl cl − 1
d a

∣∣∣∣λ − 2u

)
K+

(
cl

a
cl − 1

∣∣∣∣u + λ

)
K+

(
a

cl
d

∣∣∣∣u)
. (2.28)

Here heightcr (cl) is located on the right (left) boundary. The matrix functionsω±(u) are
simplified under the crossing symmetry (2.19), with

ω∓
c,c(u) = ϑ1(2λ ± 2u)

ϑ1(λ)

∑
a

K

(
c − 1

c

a

∣∣∣∣ ∓ u; ξ∓

)
K

(
c − 1

a

c

∣∣∣∣ ∓ u; ξ∓

)
. (2.29)

Then the functional relations have similar forms to the periodic boundary case, namely

T (m,n)

0 T (m,1)
n = T (m,n+1)

0 + f m
n−1T

(m,n−1)

0 m, n > 0. (2.30)

In this way, again after dropping the finite-size corrections, we arrive at the unitarity
relation

T (u)T (u + λ) = f (u) (2.31)

where the functionf is given by f (u) = f 1
0 (u)ρ(2u)ϑ2

1(λ)/ϑ2
1(2λ) after appropriate

renormalization of the free energies. This relation is sufficient to determine both the bulk
and surface free energies [37].
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3. Exact Bethe ansatz solution

Sklyanin presented the algebraic Bethe ansatz solution of the six-vertex model [8] or spin-1
2

XXZ chain [5] with open boundary conditions. Unfortunately, the generalization of the
algebraic Bethe ansatz to treat other integrable open boundary models has not made much
progress, in particular, for models in which the arrow or spin reversal symmetry is broken.
However, when such symmetry holds, the Bethe ansatz solutions of many integrable open
boundary models have been obtained (see, e.g., [10, 14, 38]). Here we show that the analytic
ansatz method [39] can be applied to find the transfer matrix eigenspectra of the CSOS
models. This method has also been applied with success to the CSOS models with periodic
boundary conditions [24].

3.1. Bethe ansatz solution

Consider the transfer matrixT

(
a0 aN

b0 bN

∣∣∣∣u)
, which is the transfer matrixT (1,1)

0 with fixed

heights bN , aN along the right boundary andb0, a0 along the left boundary. For the
solutions (2.16)–(2.18) the transfer matrix is non-zero only forb0 = a0 and bN = aN .

SupposeTb,d(u) = T

(
b d

b d

∣∣∣∣u − λ

)
. Let us consider the following ansatz,

Tb,d(u) = K

(
d − 1

d

d

∣∣∣∣u; ξ−

)
K

(
b + 1

b

b

∣∣∣∣u; ξ+

)
ϑ1(2u − 2λ)

ϑ1(2u − λ)

×ϑ2N
1 (λ − u)

M∏
j=1

ϑ1(u + λ + uj )ϑ1(u − uj )

ϑ1(u − λ − uj )ϑ1(u + uj )

×K

(
d + 1

d

d

∣∣∣∣u − λ; ξ−

)
K

(
b − 1

b

b

∣∣∣∣u − λ; ξ+

)
ϑ1(2u)

ϑ1(2u − λ)

×ϑ2N
1 (u)

M∏
j=1

ϑ1(u − λ + uj )ϑ1(u − 2λ − uj )

ϑ1(u − λ − uj )ϑ1(u + uj )
(3.1)

for the eigenspectra of the transfer matrixTb,d(u). We can check that the above ansatz
satisfies the functional relation (2.30) if the parametersuj satisfy

Tb,d(uk) = 0 k = 1, 2, . . . , M. (3.2)

As a result, the ansatz (3.1) should give the eigenspectra of the CSOS transfer matrix, with
(3.2) as the related Bethe ansatz equations. The eigenspectra of the fused transfer matrices
can be written down according to the fusion results from (3.1) and (3.2).

3.2. Finite-size corrections

At criticality the CSOS models are equivalent to the six-vertex model. The transfer matrix
Tb,d(u) is then independent of the boundary heights (as are the fused transfer matrices)
and the Bethe ansatz solution (3.1)–(3.2) is of the same form as the solution of the open
boundary six-vertex model [8, 14, 16]. Now the finite-size corrections to the fused transfer
matrices of theUq(sl2)-invariant six-vertex model have been derived in [19]. Thus by a
similar calculation we obtain the finite-size corrections to the fused transfer matrices of the
critical CSOS models.
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For simplicity we consider the limitξ± → i∞ with λ = π/L andN even. The fused
CSOS transfer matrix eigenvalues then behave like

logT (p,p)(u) = −2Nfb(u) − fs(u) + π

12N
(c − 2411,ν,r ) sin(Lu) + o

(
1

N

)
. (3.3)

The central charge is given by

c = 3p

p + 2
− 6p

L(L − p)
(3.4)

wherep = 1, 2, . . . , L − 2 labels the fusion level. The conformal weights are given by

11,ν,r = (L − (L − p)r)2 − p2

4Lp(L − p)
+ ν(p − ν)

2p(p + 2)
(3.5)

with ν a unique integer determined by

ν = r − 1 − p

⌊
r − 1

p

⌋
. (3.6)

andr = 1, 3, . . . 6 L − 2. Herebxc is the largest integer part less than or equal tox. The
functionsfb(u) and fs(u) are the bulk free energy and surface free energy of the critical
models, respectively, which are also calculated for the off-critical models in the next section.
They are not given explicitly here.

4. Surface free energy and critical exponents

The bulk and surface free energies of the CSOS models can be found from the unitarity
relation (2.31) with certain analyticity assumptions, as has been shown in the study of the
eight-vertex model [7, 20, 32].

The unitarity relation (2.31) combines the inversion relation and crossing symmetries of
the local bulk and boundary face weights. We can separate the contributions from the bulk
and surface free energies in this relation [37]. LetT (u) = Tb(u)Ts(u) be the eigenvalues of
the transfer matrixT (u). DefineTb = κ2N

b andTs = κs, then the free energies are defined
by fb(u) = − logκb(u) andfs(u) = − logκs(u). We have

κb(u)κb(u + λ) = ϑ1(λ − u)ϑ1(λ + u)

ϑ1(λ)ϑ1(λ)
(4.1)

for the bulk and

κs(u)κs(u + λ) = ϑ1(2λ + 2u)ϑ1(2λ − 2u)

ϑ2
1(2λ)

×K

(
d − 1

d

d

∣∣∣∣ − u; ξ−

)
K

(
d − 1

d

d

∣∣∣∣u; ξ−

)
×K

(
b − 1

b

b

∣∣∣∣ − u; ξ+

)
K

(
b − 1

b

b

∣∣∣∣u; ξ+

)
(4.2)

for the surface. Here heightd (b) is located on the right (left) boundary.
To solve the unitarity relations it is convenient to introduce the new variables

x = e−πλ/ε w = e−2πu/ε q = e−π2/ε

va = e−πwa/ε v± = e−πξ±/ε p = e−ε (4.3)
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along with the conjugate modulus transformation of the theta functions,

ϑ1(u, e−ε) = ρ(u, ε)E(e−2πu/ε, e−2π2/ε) (4.4)

ϑ4(u, e−ε) = ρ(u, ε)E(−e−2πu/ε, e−2π2/ε). (4.5)

The factorρ(u, ε) is harmless and will be disregarded, while

E(z, x) =
∞∏

n=1

(1 − xn−1z)(1 − xnz−1)(1 − xn). (4.6)

Suppose thatκb(w) is analytic and non-zero in the annulusx2 6 w 6 1, we can Laurent
expandfb(w) as logκb(w) = ∑∞

n=−∞ cnw
n. Then inserting the series expansion into the

logarithm of both sides of (4.1) and equating coefficients in powers ofw gives [23]

fb(w, p) = −
∞∑

n=1

(x2n + q2nx−2n)(1 − wn)(1 − x2nw−n)

n(1 + x2n)(1 − q2n)
. (4.7)

Similarly, taking the Laurent expansion logκs(w) = ∑∞
n=−∞ cnw

n and solving the unitarity
relation (4.2) yields

fs(w, ξ±, p) =
∞∑

n=1

(−1)n(v2n
+ v2n

b + q2nv−2n
+ v−2n

b + v2n
− v2n

d + q2nv−2n
− v−2n

d )(wn + x2nw−n)

n(1 + x2n)(1 − q2n)

+
∞∑

n=1

(v2n
+ + q2nv−2n

+ + v2n
− + q2nv−2n

− )(wn + x2nw−n)

n(1 + x2n)(1 − q2n)

−
∞∑
n=

(x4n + q2nx−4n)(1 − w2n)(1 − x4nw−2n)

n(1 + x4n)(1 − q2n)

−
∞∑

n=1

4(x2n + q2nx−2n)

n(1 − q2n)
. (4.8)

The surface free energy is explicitly dependent on the boundary heightsb, d andξ±.
The specific heat critical exponents may be obtained from the leading order singularity

of the free energies. In practice, the singular behaviour is extracted by means of the Poisson
summation formula [7]. For the bulk free energy it follows that [22, 23]

fb(w, p) ∼ pπ/λ asp → 0. (4.9)

When ` = 1 andL is even there is a multiplicative logp factor. It follows that the bulk
specific heat exponent of the CSOS models isαb = 2−π/λ where we recall thatλ = `π/L.
The same idea can be applied to find the surface specific heat exponents from the surface
energyfs(w, ξ±, p). Following [40, 41] and the treatment of the eight-vertex model [20]
we define the excess internal energyes,

es(p) ∼ ∂fs(w, ξ±, p)

∂p
+ e1(p) (4.10)

wheree1(p) is called the local internal energy in the surface layer, which is the correction
energy to the surface internal energyes(p), given by

e1(p) ∼ ∂fs(w, ξ±, p)

∂ξ±
. (4.11)
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The free parameterξ± appearing in the boundary face weights can be interpreted as a surface
coupling. This has been explicitly shown in the study of the eight-vertex model [20]. The
corresponding specific heats are defined by

Cs ∼ ∂es

∂p
C1 ∼ ∂e1

∂p
. (4.12)

Application of the Poisson summation formula tofs(w, ξ±, p) yields

es(p) ∼ pπ/2λ−1 (4.13)

e1(p) ∼ pπ/λ (4.14)

asp → 0, with a similar logp correction factor as for the bulk case. The surface specific
heat exponents of the CSOS models follow as

αs = 2 − π

2λ
and α1 = 1 − π

λ
. (4.15)

For the three colouring problem (L = 3 and` = 2) we thus obtain the valuesαs = 5
4 and

α1 = − 1
2.

Recalling the bulk exponentαb = 2− π/λ [22, 23] and the correlation length exponent
ν = π/2λ [24] we are thus able to provide a further significant test of the scaling relations
[40, 41]

αs = αb + ν and α1 = αb − 1. (4.16)

5. Discussion

In this paper we have derived exact results for the critical surface properties of the CSOS
lattice models. They can be generalized to the fused CSOS models. In this and related
work [20, 21, 37] the crossing unitarity relation plays a key role in deriving the surface free
energy away from criticality. The CSOS lattice models with fixed boundary conditions
on the square lattice with diagonal orientation can be treated in a similar manner by
incorporating inhomogeneities into the bulk face weights and taking appropriate values
of the inhomogeneities and the boundary couplingsξ±, as has been explicitly demonstrated
for the ABF RSOS models [21]. However, we do not pursue this direction here as the
change in lattice orientation does not affect the critical exponents.

The excess surface critical exponentαs has been obtained from the singular leading term
of the excess internal energyes. It turns out that the singular leading term does not depend
on the boundary face weights and thusαs is independent of the details of the boundary
weights. This behaviour has already been seen in the study of the ABF model [21].

Other models of immediate interest are the diluteAL models [42, 43] which can be
obtained from Kuniba’sA(2)

2 face model [44] under appropriate restriction. The boundary
face weights have been found for these models and the surface critical properties can thus
be studied in a similar way [45].
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